Advertisements
Advertisements
प्रश्न
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
उत्तर
\[\text{Here }a = 1, b = 3, f\left( x \right) = x^2 + 3x, h = \frac{3 - 1}{n} = \frac{2}{n}\]
Therefore,
\[ \int_1^3 \left( x^2 + 3x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ f\left( 1 \right) + f\left( 1 + h \right) + . . . . . . . . . . + f\left( 1 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ 1 + 3 + \left( 1 + h \right)^2 + 3\left( 1 + h \right) + \left( 1 + 2h \right)^2 + 3\left( 1 + 2h \right) + . . . . . . . . . + \left( \left( n - 1 \right)h \right)^2 + 3\left( \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ n + h^2 \left( 1^2 + 2^2 + . . . . . . . . . . . . . . \left( n - 1 \right)^2 \right) + 2h\left( 1 + 2 + . . . . . . . . . . . . \left( n - 1 \right) \right) + 3n + 3h\left( 1 + 2 + . . . . . . . . . . . . \left( n - 1 \right) \right) \right]\]
\[ = \lim_{h \to 0} h\left[ 4n + h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} + 5h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to 0 } \left[ 8 + \frac{4}{3}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) + 10\left( 1 - \frac{1}{n} \right) \right]\]
\[ = 8 + \frac{8}{3} + 10\]
\[ = \frac{62}{3}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate :
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
`int_0^(2a)f(x)dx`
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`