Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 x\ e^{x^2} d\ x . \]
\[Let\ x^2 = t . Then, 2x\ dx = dt\]
\[When\ x = 0, t = 0\ and\ x\ = 1\, t = 1\]
\[ \therefore I = \frac{1}{2} \int_0^1 e^t\ dt\]
\[ \Rightarrow I = \frac{1}{2} \left( e^t \right)_0^1 \]
\[ \Rightarrow I = \frac{1}{2}\left( e - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`