हिंदी

1 ∫ 0 X E X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 x e^{x^2} dx\]

उत्तर

\[Let\ I = \int_0^1 x\ e^{x^2} d\ x . \]
\[Let\ x^2 = t . Then, 2x\ dx = dt\]
\[When\ x = 0, t = 0\ and\ x\ = 1\, t = 1\]
\[ \therefore I = \frac{1}{2} \int_0^1 e^t\ dt\]
\[ \Rightarrow I = \frac{1}{2} \left( e^t \right)_0^1 \]
\[ \Rightarrow I = \frac{1}{2}\left( e - 1 \right)\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 7 | पृष्ठ ३८

संबंधित प्रश्न

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


`int_0^(2a)f(x)dx`


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×