हिंदी

∫ π 2 0 Tan X 1 + M 2 Tan 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]
योग

उत्तर

\[\text{Let I }= \int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[= \int_0^\frac{\pi}{2} \frac{\frac{\sin x}{\cos x}}{1 + m^2 \frac{\sin^2 x}{\cos^2 x}}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin x\cos x}{\cos^2 x + m^2 \sin^2 x}dx\]

Put

\[\cos^2 x + m^2 \sin^2 x = z\]

\[\therefore 2\cos x\left( - \sin x \right)dx + m^2 \times 2\sin x\cos\ x\ dx = dz\]
\[ \Rightarrow 2\left( m^2 - 1 \right)\sin x\cos\ x\ dx = dz\]
\[ \Rightarrow \sin x\cos\ x\ dx = \frac{dz}{2\left( m^2 - 1 \right)}\]

When

\[x \to 0, z \to 1\]
\[\left( z = \cos^2 x + m^2 \sin^2 x = 1 + m^2 \times 0 = 1 \right)\]

When

\[x \to \frac{\pi}{2}, z \to m^2\]
\[\left( z = \cos^2 x + m^2 \sin^2 x = 0 + m^2 \times 1 = m^2 \right)\]

\[\therefore I = \frac{1}{2\left( m^2 - 1 \right)} \int_1^{m^2} \frac{dz}{z}\]
\[ = \left.\frac{1}{2\left( m^2 - 1 \right)} \log z\right|_1^{m^2} \]
\[ = \frac{1}{2\left( m^2 - 1 \right)}\left( \log m^2 - \log1 \right)\]
\[ = \frac{1}{2\left( m^2 - 1 \right)}\left( 2\log\left| m \right| - 0 \right)\]
\[ = \frac{\log\left| m \right|}{m^2 - 1}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 57 | पृष्ठ ४०

संबंधित प्रश्न

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×