Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I }= \int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin x\cos x}{\cos^2 x + m^2 \sin^2 x}dx\]
Put
\[\therefore 2\cos x\left( - \sin x \right)dx + m^2 \times 2\sin x\cos\ x\ dx = dz\]
\[ \Rightarrow 2\left( m^2 - 1 \right)\sin x\cos\ x\ dx = dz\]
\[ \Rightarrow \sin x\cos\ x\ dx = \frac{dz}{2\left( m^2 - 1 \right)}\]
When
When
\[\therefore I = \frac{1}{2\left( m^2 - 1 \right)} \int_1^{m^2} \frac{dz}{z}\]
\[ = \left.\frac{1}{2\left( m^2 - 1 \right)} \log z\right|_1^{m^2} \]
\[ = \frac{1}{2\left( m^2 - 1 \right)}\left( \log m^2 - \log1 \right)\]
\[ = \frac{1}{2\left( m^2 - 1 \right)}\left( 2\log\left| m \right| - 0 \right)\]
\[ = \frac{\log\left| m \right|}{m^2 - 1}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`