Advertisements
Advertisements
प्रश्न
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
उत्तर
\[\int_\frac{- \pi}{2}^\frac{\pi}{2} \sin^9 x d x\]
\[\text{Let }f(x) = \sin^9 x\]
\[\text{Consider, }f(-x) = \sin^9 \left( - x \right) = - \sin^9 x = - f\left( x \right)\]
Thus f(x) is an odd function
Therefore,
\[ \int_\frac{- \pi}{2}^\frac{\pi}{2} \sin^9 x d x = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Evaluate each of the following integral:
Evaluate each of the following integral:
Write the coefficient a, b, c of which the value of the integral
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
Γ(1) is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Find: `int logx/(1 + log x)^2 dx`