हिंदी

Π / 2 ∫ 0 X Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

विकल्प

  •  π/4

  •  π/2

  • π

  • 1

MCQ

उत्तर

1

\[\text{We have}, \]

\[ I = \int_0^\frac{\pi}{2} x \sin x\ d x \]

\[ = \left[ - x \cos x \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 1\left( - \cos x \right) d x\]

\[ = \left[ - x \cos x \right]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} \cos x\ d x\]

\[ = - \left[ x \cos x \right]_0^\frac{\pi}{2} + \left[ \sin x \right]_0^\frac{\pi}{2} \]

\[ = - \left[ 0 - 0 \right] + \left[ 1 - 0 \right]\]

\[ = 1\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - MCQ [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
MCQ | Q 34 | पृष्ठ १२०

संबंधित प्रश्न

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following:

Γ(4)


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Choose the correct alternative:

`Γ(3/2)`


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


`int x^3/(x + 1)` is equal to ______.


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×