Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_0^\pi x \sin x \cos^4 x d x ................(1)\]
\[ = \int_0^\pi \left( \pi - x \right) \sin\left( \pi - x \right) \cos^4 \left( \pi - x \right) d x\]
\[ = \int_0^\pi \left( \pi - x \right) \sin x \cos^4 x dx ..................(2) \]
\[\text{Adding (1) and (2) we get}\]
\[2I = \int_0^\pi \left( x + \pi - x \right) \sin x \cos^4 x\ dx \]
\[ = \pi \int_0^\pi \sin x \cos^4 x\ d x \]
\[ Let\ \cos x = t, \text{Then }- sinx \ dx = dt, \]
\[ \text{When} x = 0, t = 1, x = \pi, t = - 1\]
\[\text{Therefore}, 2I = - \pi \int_1^{- 1} t^4 dt\]
\[ = \pi \int_{- 1}^1 t^4 dt\]
\[ = \pi \left[ \frac{t^5}{5} \right]_{- 1}^1 \]
\[ = \frac{\pi}{5} + \frac{\pi}{5}\]
\[ = \frac{2\pi}{5}\]
\[\text{Hence } I = \frac{\pi}{5}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate the following integral:
Evaluate each of the following integral:
Solve each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is