हिंदी

Π ∫ 0 X Sin X Cos 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]
योग

उत्तर

\[Let I = \int_0^\pi x \sin x \cos^4 x d x ................(1)\]
\[ = \int_0^\pi \left( \pi - x \right) \sin\left( \pi - x \right) \cos^4 \left( \pi - x \right) d x\]
\[ = \int_0^\pi \left( \pi - x \right) \sin x \cos^4 x dx ..................(2) \]
\[\text{Adding (1) and (2) we get}\]
\[2I = \int_0^\pi \left( x + \pi - x \right) \sin x \cos^4 x\ dx \]
\[ = \pi \int_0^\pi \sin x \cos^4 x\ d x \]
\[ Let\ \cos x = t, \text{Then }- sinx \ dx = dt, \]
\[ \text{When} x = 0, t = 1, x = \pi, t = - 1\]
\[\text{Therefore}, 2I = - \pi \int_1^{- 1} t^4 dt\]
\[ = \pi \int_{- 1}^1 t^4 dt\]
\[ = \pi \left[ \frac{t^5}{5} \right]_{- 1}^1 \]
\[ = \frac{\pi}{5} + \frac{\pi}{5}\]
\[ = \frac{2\pi}{5}\]
\[\text{Hence } I = \frac{\pi}{5}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.5 | Q 12 | पृष्ठ ९५

संबंधित प्रश्न

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

\[\int\limits_0^2 \left[ x \right] dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×