हिंदी

Π ∫ 0 X Sin 3 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi x \sin^3 x\ dx\]

उत्तर

\[Let\ I = \int_0^\pi x \sin^3 x\ d x . . . (i)\]
\[ = \int_0^\pi \left( \pi - x \right) \sin^3 \left( \pi - x \right) d x\]
\[ = \int_0^\pi \left( \pi - x \right) \sin^3 x dx . . . (ii)\]
\[\text{Adding (i) and (ii) we get}\]
\[2I = \int_0^\pi \left( x + \pi - x \right) \sin^3 x\ d x\]
\[ = \int_0^\pi \pi \sin^3 x d x\]
\[ = \int_0^\pi \pi \frac{3 \sin x - \sin 3x}{4} d\ x\]
\[ = \frac{\pi}{4} \int_0^\pi \left( 3 \sin x - \sin 3x \right) d x\]
\[ = \frac{\pi}{4} \left[ - 3 \cos x + \frac{\cos 3x}{3} \right]_0^\pi \]
\[ = \frac{\pi}{4}\left[ - 3 \cos \pi + 3\cos 0 + \frac{\cos 3\pi}{3} - \frac{\cos 0}{3} \right]\]
\[ = \frac{\pi}{4}\left[ 3 + 3 + \frac{- 1}{3} - \frac{1}{3} \right]\]
\[ = \frac{\pi}{2}\left[ 3 - \frac{1}{3} \right]\]
\[ = \frac{\pi}{2} \times \frac{8}{3}\]
\[ = \frac{4\pi}{3}\]
\[ \therefore I = \frac{2\pi}{3}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.5 | Q 13 | पृष्ठ ९५

संबंधित प्रश्न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_0^4 x dx\]


Evaluate the following:

`Γ (9/2)`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Choose the correct alternative:

If n > 0, then Γ(n) is


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×