Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \frac{1}{5 + 4 \sin x} d x . Then, \]
\[I = \int_0^\frac{\pi}{2} \frac{1}{5 + 4\left( \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)} d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{5\left( 1 + \tan^2 \frac{x}{2} \right) + 8 \tan \frac{x}{2}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{5 \tan^2 \frac{x}{2} + 8 \tan \frac{x}{2} + 5} dx\]
\[Let\ \tan \frac{x}{2} = t . Then, \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]
\[When\ x = 0, t = 0 and x = \frac{\pi}{2}, t = 1\]
\[ \therefore I = 2 \int_0^1 \frac{1}{5 t^2 + 8t + 5} dt\]
\[ \Rightarrow I = 2 \int_0^1 \frac{1}{\left( \sqrt{5}t \right)^2 + 8t + 5 + \left( \frac{4}{\sqrt{5}} \right)^2 - \left( \frac{4}{\sqrt{5}} \right)^2} dt\]
\[ \Rightarrow I = 2 \int_0^1 \frac{1}{\left( \sqrt{5}t + \frac{4}{\sqrt{5}} \right)^2 + \frac{9}{5}} dt\]
\[ \Rightarrow I = \frac{2}{3} \left[ \tan^{- 1} \left( \frac{\sqrt{5}t + \frac{4}{\sqrt{5}}}{\frac{3}{\sqrt{5}}} \right) \right]_0^1 \]
\[ \Rightarrow I = \frac{2}{3}\left[ \tan^{- 1} 3 - \tan^{- 1} \frac{4}{3} \right]\]
\[ \Rightarrow I = \frac{2}{3}\left[ \tan^{- 1} \left( \frac{3 - \frac{4}{3}}{1 + 3 \times \frac{4}{3}} \right) \right]\]
\[ \Rightarrow I = \frac{2}{3} \tan^{- 1} \frac{1}{3}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Solve each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
Evaluate :
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \tan^{- 1} x dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Choose the correct alternative:
Γ(1) is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x