Advertisements
Advertisements
प्रश्न
विकल्प
π/3
π/6
π/12
π/2
उत्तर
\[\frac{\pi}{12}\]
\[Let\, I = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{cotx}} d x .............(1)\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{cot\left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)}} dx ..............\left[\text{Using }\int_a^b f\left( x \right) d x = \int_a^b f\left( a + b - x \right) d x \right]\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{\tan x}} d x .................(2)\]
Adding (1) and (2) we get
\[2I = \int_\frac{\pi}{6}^\frac{\pi}{3} \left[ \frac{1}{1 + \sqrt{cotx}} + \frac{1}{1 + \sqrt{\tan x}} \right] d x \]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{2 + \sqrt{cotx} + \sqrt{\tan x}}{\left( 1 + \sqrt{cotx} \right)\left( 1 + \sqrt{\tan x} \right)}dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \left[ \frac{2 + \sqrt{cotx} + \sqrt{\tan x}}{2 + \sqrt{cotx} + \sqrt{\tan x}} \right]dx \]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} dx\]
\[ = \left[ x \right]_\frac{\pi}{6}^\frac{\pi}{3} \]
\[ = \frac{\pi}{3} - \frac{\pi}{6}\]
\[ = \frac{\pi}{6}\]
\[\text{Hence, }I = \frac{\pi}{12}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`