हिंदी

Π / 3 ∫ π / 6 1 1 + √ Cot X D X is (A) π/3 (B) π/6 (C) π/12 (D) π/2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is

विकल्प

  •  π/3

  •  π/6

  • π/12

  • π/2

MCQ

उत्तर

\[\frac{\pi}{12}\]
\[Let\, I = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{cotx}} d x .............(1)\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{cot\left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)}} dx ..............\left[\text{Using }\int_a^b f\left( x \right) d x = \int_a^b f\left( a + b - x \right) d x \right]\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{\tan x}} d x .................(2)\]
Adding (1) and (2) we get
\[2I = \int_\frac{\pi}{6}^\frac{\pi}{3} \left[ \frac{1}{1 + \sqrt{cotx}} + \frac{1}{1 + \sqrt{\tan x}} \right] d x \]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{2 + \sqrt{cotx} + \sqrt{\tan x}}{\left( 1 + \sqrt{cotx} \right)\left( 1 + \sqrt{\tan x} \right)}dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \left[ \frac{2 + \sqrt{cotx} + \sqrt{\tan x}}{2 + \sqrt{cotx} + \sqrt{\tan x}} \right]dx \]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} dx\]
\[ = \left[ x \right]_\frac{\pi}{6}^\frac{\pi}{3} \]
\[ = \frac{\pi}{3} - \frac{\pi}{6}\]
\[ = \frac{\pi}{6}\]
\[\text{Hence, }I = \frac{\pi}{12}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - MCQ [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
MCQ | Q 12 | पृष्ठ ११८

संबंधित प्रश्न

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×