हिंदी

Π / 4 ∫ 0 ( √ Tan X + √ Cot X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]
योग

उत्तर

\[Let\ I = \int_0^\frac{\pi}{4} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) d\ x . Then, \]
\[I = \int_0^\frac{\pi}{4} \left( \sqrt{\frac{\sin x}{\cos x}} + \sqrt{\frac{\cos x}{\sin x}} \right) d\ x \]
\[ \Rightarrow I = \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{\sqrt{\sin x \cos x}} dx\]
\[ \Rightarrow I = \sqrt{2} \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{\sqrt{2 \sin x \cos x}} dx\]
\[ \Rightarrow I = \sqrt{2} \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{\sqrt{1 - \left( \sin x - \cos x \right)^2}} dx\]
\[Let\ \sin x - \cos\ x = t . Then, \cos x\ + \sin x\ dx\ = dt\]
\[When\ x = 0, t = 1\ and\ x\ = \frac{\pi}{4}, t = 0\]
\[ \therefore I = \sqrt{2} \int_{- 1}^0 \frac{dt}{\sqrt{1 - t^2}}\]
\[ \Rightarrow I = \sqrt{2} \left[ \sin^{- 1} t \right]_{- 1}^0 \]

\[ \Rightarrow I =\sqrt{2}\left[\sin^{-1}(0)-\sin^{-1}(-1)\right]\]

\[ \Rightarrow I = \frac{\pi}{\sqrt{2}}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 25 | पृष्ठ ३९

संबंधित प्रश्न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_2^3 e^{- x} dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Choose the correct alternative:

Γ(1) is


Choose the correct alternative:

`Γ(3/2)`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×