Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_0^\frac{\pi}{4} \tan^2 x\ d x\]
\[ = \int_0^\frac{\pi}{4} \left( se c^2 x - 1 \right) d x\]
\[ = \left[ \tan x - x \right]_0^\frac{\pi}{4} \]
\[ = 1 - \frac{\pi}{4} - 0\]
\[ = 1 - \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Find: `int logx/(1 + log x)^2 dx`