Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \sqrt{1 + \cos x}\ d\ x\ . Then, \]
\[I = \int_0^\frac{\pi}{2} \sqrt{1 + \cos x} \times \frac{\sqrt{1 - \cos x}}{\sqrt{1 - \cos x}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\sqrt{1 - \cos^2 x}}{\sqrt{1 - \cos x}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\sin x}{\sqrt{1 - \cos x}} dx\]
\[Let 1 - \cos x = u\]
\[ \Rightarrow \sin x\ dx\ = du\]
\[ \therefore I = \int\frac{du}{\sqrt{u}}\]
\[ \Rightarrow I = \left[ 2\sqrt{u} \right]\]
\[ \Rightarrow I = \left[ 2\sqrt{1 - \cos x} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 2 - 0\]
\[ \Rightarrow I = 2\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following definite integrals:
Evaluate each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Find : `∫_a^b logx/x` dx
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
Γ(1) is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.