Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = 0, b = \frac{\pi}{2}, f\left( x \right) = \sin x, h = \frac{\frac{\pi}{2} - 0}{n} = \frac{\pi}{2n}\]
Therefore,
\[I = \int_0^\frac{\pi}{2} \sin x\ d\ x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . + f\left( 0 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ \sin0 + \sinh + \sin2h + . . . + \sin\left( n - 1 \right)h \right]\]
\[ = \lim_{h \to 0} h\left[ \frac{\sin\left( \left( n - 1 \right)\frac{h}{2} \right)\sin\frac{nh}{2}}{\sin\frac{h}{2}} \right]\]
\[ = \lim_{h \to 0} \left[ \frac{\frac{h}{2}}{\sin\frac{h}{2}} \times 2\sin\left( \frac{\pi}{4} - \frac{h}{2} \right)\sin\frac{\pi}{4} \right] \left( Using nh = \frac{\pi}{2} \right)\]
\[ = \lim_{h \to 0} \frac{\frac{h}{2}}{\sin\frac{h}{2}} \times \lim_{h \to 0} 2\sin\left( \frac{\pi}{4} - \frac{h}{2} \right)\sin\frac{\pi}{4}\]
\[ = 2\sin\frac{\pi}{4}\sin\frac{\pi}{4} = 2 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate each of the following integral:
Evaluate each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
`int_0^(2a)f(x)dx`
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^4 x dx\]
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.