हिंदी

∫ π 3 π 6 ( Tan X + Cot X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]
योग

उत्तर

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan^2 x + \cot^2 x + 2\tan x\cot x \right)dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \left( \sec^2 x - 1 + {cosec}^2 x - 1 + 2 \right)dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \sec^2 xdx + \int_\frac{\pi}{6}^\frac{\pi}{3} {cosec}^2 xdx\]

\[= \left.\tan x\right|_\frac{\pi}{6}^\frac{\pi}{3} + \left.\left( - \cot x \right)\right|_\frac{\pi}{6}^\frac{\pi}{3} \]
\[ = \left( \tan\frac{\pi}{3} - \tan\frac{\pi}{6} \right) - \left( \cot\frac{\pi}{3} - \cot\frac{\pi}{6} \right)\]
\[ = \left( \sqrt{3} - \frac{1}{\sqrt{3}} \right) - \left( \frac{1}{\sqrt{3}} - \sqrt{3} \right)\]
\[ = 2\sqrt{3} - \frac{2}{\sqrt{3}}\]
\[ = \frac{4}{\sqrt{3}}\]

 

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.1 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.1 | Q 66 | पृष्ठ १८

संबंधित प्रश्न

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

\[\int\limits_0^2 \left[ x \right] dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Choose the correct alternative:

If n > 0, then Γ(n) is


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×