Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan^2 x + \cot^2 x + 2\tan x\cot x \right)dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \left( \sec^2 x - 1 + {cosec}^2 x - 1 + 2 \right)dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \sec^2 xdx + \int_\frac{\pi}{6}^\frac{\pi}{3} {cosec}^2 xdx\]
\[ = \left( \tan\frac{\pi}{3} - \tan\frac{\pi}{6} \right) - \left( \cot\frac{\pi}{3} - \cot\frac{\pi}{6} \right)\]
\[ = \left( \sqrt{3} - \frac{1}{\sqrt{3}} \right) - \left( \frac{1}{\sqrt{3}} - \sqrt{3} \right)\]
\[ = 2\sqrt{3} - \frac{2}{\sqrt{3}}\]
\[ = \frac{4}{\sqrt{3}}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate the following integral:
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Choose the correct alternative:
If n > 0, then Γ(n) is
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.