हिंदी

D∫x9(4x2+1)6 dx is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.

विकल्प

  • `1/(5x)(4 + 1/x^2)^-5 + "C"`

  • `1/5(4 + 1/x^2)^-5 + "C"`

  • `1/(10x)(1 + 4)^-5 + "C"`

  • `1/10(1/x^2 + 4)^-5 + "C"`

MCQ
रिक्त स्थान भरें

उत्तर

`int x^9/(4x^2 + 1)^6  "d"x` is equal to `1/10(1/x^2 + 4)^-5 + "C"`.

Explanation:

Let I = `int x^9/(4x^2 + 1)^6 "d"x`

= `int  x^9/(x^12(4 + 1/x^2)^6) "d"x`

= `int 1/(x^3(4 + 1/x^2)^6) "d"x`

Put `(4 + 1/x^2)` = t

⇒ `(-2)/x^3 "dt"` = dt

⇒ `"dx"/x^3 = - 1/2 "dt"`

∴ I = `- 1/2 int "dt"/"t"^6`

= `- 1/2 xx - 1/5 "t"^-5 + "C"`

= `1/10 "t"^-5 + "C"`

= `1/10(4 + 1/x^2)^-5 + "C"`

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 52 | पृष्ठ १६७

संबंधित प्रश्न

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×