Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
उत्तर
\[\int_0^\pi \cos2x \log\sin x d x\]
\[ = \left[ \log\sin x \frac{\sin2x}{2} \right]_0^\pi - \int_0^\pi \frac{\cos x}{\sin x}\frac{\sin2x}{2} dx\]
\[ = \left[ \log\sin x \frac{\sin2x}{2} \right]_0^\pi - \int_0^\pi \cos^2 x dx\]
\[ = \left[ \log\sin x \frac{\sin2x}{2} \right]_0^\pi - \int_0^\pi \frac{1 + \cos2x}{2}dx\]
\[ = \left[ \log\sin x \frac{\sin2x}{2} \right]_0^\pi - \frac{1}{2} \left[ x + \frac{\sin2x}{2} \right]_0^\pi \]
\[ = 0 - \frac{1}{2}\left( \pi + 0 \right)\]
\[ = - \frac{\pi}{2}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`