Advertisements
Advertisements
प्रश्न
उत्तर
Let
\[= \int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\cos^6 x \left( \tan^3 x + 1 \right)^2}dx\]
\[ = \int_0^\frac{\pi}{4} \frac{\tan^2 x \sec^2 x}{\left( \tan^3 x + 1 \right)^2}dx\]
Put
\[\therefore 3 \tan^2 x \sec^2 xdx = dz\]
\[ \Rightarrow \tan^2 x \sec^2 xdx = \frac{dz}{3}\]
When
When
\[\therefore I = \frac{1}{3} \int_1^2 \frac{dz}{z^2}\]
\[ = \left.\frac{1}{3} \times - \frac{1}{z}\right|_1^2 \]
\[ = - \frac{1}{3}\left( \frac{1}{2} - 1 \right)\]
\[ = - \frac{1}{3} \times \left( - \frac{1}{2} \right)\]
\[ = \frac{1}{6}\]
APPEARS IN
संबंधित प्रश्न
If f(2a − x) = −f(x), prove that
Evaluate each of the following integral:
Solve each of the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.