Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin^{- 1} \left( \sin x \right)dx + \int_\frac{\pi}{2}^\pi \sin^{- 1} \left( \sin x \right)dx\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} xdx + \int_\frac{\pi}{2}^\pi \left( \pi - x \right)dx ..............\left[ \frac{\pi}{2} \leq x \leq \pi \Rightarrow - \pi \leq - x \leq - \frac{\pi}{2} \Rightarrow 0 \leq \pi - x \leq \frac{\pi}{2} \right]\]
\[ = \left.\frac{x^2}{2}\right|_{- \frac{\pi}{2}}^\frac{\pi}{2} + \left.\frac{\left( \pi - x \right)^2}{2 \times \left( - 1 \right)}\right|_\frac{\pi}{2}^\pi \]
\[ = \frac{1}{2}\left( \frac{\pi^2}{4} - \frac{\pi^2}{4} \right) - \frac{1}{2}\left( 0 - \frac{\pi^2}{4} \right)\]
\[= 0 + \frac{\pi^2}{8}\]
\[ = \frac{\pi^2}{8}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: