Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I } = \int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
Put
When `xrarr0, thetararr0`
When \[x \to \frac{1}{2}, \theta \to \frac{\pi}{6}\]
\[\therefore I = \int_0^\frac{\pi}{6} \frac{\sin\theta \sin^{- 1} \left( \sin\theta \right)}{\cos\theta}\cos\theta d\theta\]
\[ = \int_0^\frac{\pi}{6} \theta\sin\theta d\theta\]
Applying integration by parts, we have
\[ = - \left( \frac{\pi}{6}\cos\frac{\pi}{6} - 0 \right) + \int_0^\frac{\pi}{6} \cos\theta d\theta\]
\[ = - \frac{\pi}{6} \times \frac{\sqrt{3}}{2} + \sin\theta_0^\frac{\pi}{6} \]
\[ = - \frac{\pi}{4\sqrt{3}} + \left( \sin\frac{\pi}{6} - \sin0 \right)\]
\[ = - \frac{\pi}{4\sqrt{3}} + \left( \frac{1}{2} - 0 \right)\]
\[ = \frac{1}{2} - \frac{\pi}{4\sqrt{3}}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If f is an integrable function, show that
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`