हिंदी

∫ 1 2 0 X Sin − 1 X √ 1 − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
योग

उत्तर

\[\text{Let I } = \int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

Put

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
\[\therefore dx = \cos\theta d\theta\]

When `xrarr0, thetararr0`

 

When \[x \to \frac{1}{2}, \theta \to \frac{\pi}{6}\]

\[\therefore I = \int_0^\frac{\pi}{6} \frac{\sin\theta \sin^{- 1} \left( \sin\theta \right)}{\cos\theta}\cos\theta d\theta\]

\[ = \int_0^\frac{\pi}{6} \theta\sin\theta d\theta\]

Applying integration by parts, we have

\[\left.I = \theta\left( - \cos\theta \right)\right|_0^\frac{\pi}{6} - \int_0^\frac{\pi}{6} 1 \times \left( - \cos\theta \right)d\theta\]
\[ = - \left( \frac{\pi}{6}\cos\frac{\pi}{6} - 0 \right) + \int_0^\frac{\pi}{6} \cos\theta d\theta\]
\[ = - \frac{\pi}{6} \times \frac{\sqrt{3}}{2} + \sin\theta_0^\frac{\pi}{6} \]
\[ = - \frac{\pi}{4\sqrt{3}} + \left( \sin\frac{\pi}{6} - \sin0 \right)\]
\[ = - \frac{\pi}{4\sqrt{3}} + \left( \frac{1}{2} - 0 \right)\]
\[ = \frac{1}{2} - \frac{\pi}{4\sqrt{3}}\]
shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 24 | पृष्ठ ३९

संबंधित प्रश्न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×