Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[ = \lim_{h \to 0} h\left[ f\left( 2 \right) + f\left( 2 + h \right) + . . . + f\left( 2 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 2 - 2 \right) + \left( 2 - h - 2 \right) + . . . + \left( 2 - \left( n - 1 \right)h - 2 \right) \right]\]
\[ = \lim_{h \to 0} h\left[ - h\left( 1 + 2 + 3 + . . . + \left( n - 1 \right) \right) \right]\]
\[ = \lim_{h \to 0} h\left[ - 2h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{2}{n}\left[ - 2n + 2 \right]\]
\[ = \lim_{n \to \infty} 2\left( - 2 + \frac{2}{n} \right)\]
\[ = - 4\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Solve each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x