हिंदी

Π / 2 ∫ 0 Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \cos x\ dx\]
योग

उत्तर

\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = 0, b = \frac{\pi}{2}, f\left( x \right) = \cos x, h = \frac{\frac{\pi}{2} - 0}{n} = \frac{\pi}{2n}\]
Therefore,
\[I = \int_0^\frac{\pi}{2} \cos x d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . + f\left( 0 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ \cos0 + \cosh + \cos2h + . . . + \cos\left( n - 1 \right)h \right]\]
\[ = \lim_{h \to 0} h\left[ \frac{\cos\left( \left( n - 1 \right)\frac{h}{2} \right)\sin\frac{nh}{2}}{\sin\frac{h}{2}} \right]\]
\[ = \lim_{h \to 0} h\left[ \frac{\cos\left( \frac{\pi}{4} - \frac{h}{2} \right)\sin\frac{\pi}{4}}{\sin\frac{h}{2}} \right] ...............\left(\text{Using, }nh = \frac{\pi}{2} \right)\]
\[ = \lim_{h \to 0} \left[ \frac{\frac{h}{2}}{\sin\frac{h}{2}} \times 2\cos\left( \frac{\pi}{4} - \frac{h}{2} \right)\sin\frac{\pi}{4} \right]\]
\[ = \lim_{h \to 0} \frac{\frac{h}{2}}{\sin\frac{h}{2}} \times \lim_{h \to 0} 2\cos\left( \frac{\pi}{4} - \frac{h}{2} \right)\sin\frac{\pi}{4}\]
\[ = 2\cos\frac{\pi}{4} \sin\frac{\pi}{4} = 2 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = 1\]
shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.6 [पृष्ठ १११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.6 | Q 19 | पृष्ठ १११

संबंधित प्रश्न

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^{15} \left[ x \right] dx .\]

\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×