Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{where }h = \frac{b - a}{n}\]
Therefore,
\[I = \int_0^\frac{\pi}{2} \cos x d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . + f\left( 0 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ \cos0 + \cosh + \cos2h + . . . + \cos\left( n - 1 \right)h \right]\]
\[ = \lim_{h \to 0} h\left[ \frac{\cos\left( \left( n - 1 \right)\frac{h}{2} \right)\sin\frac{nh}{2}}{\sin\frac{h}{2}} \right]\]
\[ = \lim_{h \to 0} h\left[ \frac{\cos\left( \frac{\pi}{4} - \frac{h}{2} \right)\sin\frac{\pi}{4}}{\sin\frac{h}{2}} \right] ...............\left(\text{Using, }nh = \frac{\pi}{2} \right)\]
\[ = \lim_{h \to 0} \left[ \frac{\frac{h}{2}}{\sin\frac{h}{2}} \times 2\cos\left( \frac{\pi}{4} - \frac{h}{2} \right)\sin\frac{\pi}{4} \right]\]
\[ = \lim_{h \to 0} \frac{\frac{h}{2}}{\sin\frac{h}{2}} \times \lim_{h \to 0} 2\cos\left( \frac{\pi}{4} - \frac{h}{2} \right)\sin\frac{\pi}{4}\]
\[ = 2\cos\frac{\pi}{4} \sin\frac{\pi}{4} = 2 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = 1\]
APPEARS IN
संबंधित प्रश्न
If f(2a − x) = −f(x), prove that
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`