Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{1}{1 + \sin x} d x . Then, \]
\[I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{1}{1 + \sin x} \times \frac{1 - \sin x}{1 - \sin x} d x\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{1 - \sin x}{1 - \sin^2 x} dx\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{1 - \sin x}{\cos^2 x} dx\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \frac{1}{\cos^2 x} - \frac{\sin x}{\cos^2 x} \right) dx\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \sec^2 x - \sec x \tan x \right) dx\]
\[ \Rightarrow I = \left[ \tan x - \sec x \right]_{- \frac{\pi}{4}}^\frac{\pi}{4} \]
\[ \Rightarrow I = \left( 1 - \sqrt{2} \right) - \left( - 1 - \sqrt{2} \right)\]
\[ \Rightarrow I = 2\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.