Advertisements
Advertisements
प्रश्न
विकल्प
π
π/2
0
2π
उत्तर
0
\[I = \int_0^\frac{\pi}{2} \sin2x \log \tan x\ d x . . . . . \left( 1 \right)\]
\[I = \int_0^\frac{\pi}{2} \sin\left( \pi - 2x \right) \log \tan\left( \frac{\pi}{2} - x \right) d x\]
\[I = \int_0^\frac{\pi}{2} \sin2x \log \cot x\ d x . . . . . \left( 2 \right)\]
\[\text{Adding} \left( 1 \right) and \left( 2 \right), \text{we get}, \]
\[2I = \int_0^\frac{\pi}{2} \sin2x\left( \log \tan x + \log \cot x \right) d x\]
\[2I = \int_0^\frac{\pi}{2} \sin2x\left( \log \tan x \cot x \right) d x\]
\[2I = \int_0^\frac{\pi}{2} \sin2x\left( \log1 \right) d x\]
\[I = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
Evaluate the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is