Advertisements
Advertisements
प्रश्न
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
उत्तर
\[\int_1^2 \frac{1}{x^2} e^\frac{- 1}{x} d x\]
\[Let \frac{- 1}{x} = t, then \frac{1}{x^2} dx = dt\]
\[\text{When, }x \to 1 ; t \to - 1\]
\[\text{And }x \to 2 ; t \to \frac{- 1}{2}\]
Therefore the integral becomes
\[ \int_{- 1}^\frac{- 1}{2} e^t d t\]
\[ = \left[ e^t \right]_{- 1}^\frac{- 1}{2} \]
\[ = e^\frac{- 1}{2} - e^{- 1} \]
\[ = \frac{\sqrt{e} - 1}{e}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is