Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{\tan x}} d x .................(1)\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{\tan\left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)}} d x\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{cotx}}dx ....................(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_\frac{\pi}{6}^\frac{\pi}{3} \left( \frac{1}{1 + \sqrt{\tan x}} + \frac{1}{1 + \sqrt{cotx}} \right) d x \]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \left( \frac{1 + \sqrt{cotx} + 1 + \sqrt{\tan x}}{1 + \sqrt{cotx} + \sqrt{\tan x} + \sqrt{\tan x cotx}} \right) dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{2 + \sqrt{cotx} + \sqrt{\tan x}}{2 + \sqrt{cotx} + \sqrt{\tan x}} dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} dx = \left[ x \right]_\frac{\pi}{6}^\frac{\pi}{3} \]
\[ = \frac{\pi}{3} - \frac{\pi}{6}\]
\[ \therefore 2I = \frac{\pi}{6}\]
\[Hence\ I = \frac{\pi}{12}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate each of the following integral:
Evaluate :
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`Γ(3/2)`