Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} d\ x . Then, \]
\[\text{Dividing the numerator and denominator by} \cos^2 x, we\ get\]
\[I = \int_0^\frac{\pi}{2} \frac{\sec^2 x}{a^2 \tan^2 x + b^2} d x\]
\[Let\ \tan x = t . Then, \sec^2 x\ dx\ = dt\]
\[When\ x = 0, t = 0\ and\ x\ = \frac{\pi}{2} , t = \infty \]
\[ \therefore I = \int_0^\infty \frac{1}{a^2 t^2 + b^2} d t\]
\[ \Rightarrow I = \frac{1}{a^2} \int_0^\infty \frac{1}{t^2 + \frac{b^2}{a^2}} dt\]
\[ \Rightarrow I = \frac{1}{a^2} \times \frac{a}{b} \left[ \tan^{- 1} \frac{at}{b} \right]_0^\infty \]
\[ \Rightarrow I = \frac{1}{ab}\frac{\pi}{2}\]
\[ \Rightarrow I = \frac{\pi}{2ab}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate the following integral:
Evaluate each of the following integral:
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`