हिंदी

5 ∫ 0 4 √ X + 4 4 √ X + 4 + 4 √ 9 − X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]
योग

उत्तर

\[Let I = \int_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}} d x......................(1)\]
\[I = \int_0^5 \frac{\sqrt[4]{9 - x}}{\sqrt[4]{9 - x} - \sqrt[4]{x + 4}}dx ...........................\left[\text{Using }\int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[I = - \int_0^5 \frac{\sqrt[4]{9 - x}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}}dx ...................(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}} - \frac{\sqrt[4]{9 - x}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}}dx \]
\[ = \int_0^5 \frac{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}}dx\]
\[ = \int_0^5 dx\]
\[ = \left[ x \right]_0^5 \]
\[ = 5\]
\[Hence\ I = \frac{5}{2}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.4 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.4 | Q 13 | पृष्ठ ६१

संबंधित प्रश्न

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×