Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}} d x......................(1)\]
\[I = \int_0^5 \frac{\sqrt[4]{9 - x}}{\sqrt[4]{9 - x} - \sqrt[4]{x + 4}}dx ...........................\left[\text{Using }\int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[I = - \int_0^5 \frac{\sqrt[4]{9 - x}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}}dx ...................(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}} - \frac{\sqrt[4]{9 - x}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}}dx \]
\[ = \int_0^5 \frac{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}}dx\]
\[ = \int_0^5 dx\]
\[ = \left[ x \right]_0^5 \]
\[ = 5\]
\[Hence\ I = \frac{5}{2}\]
APPEARS IN
संबंधित प्रश्न
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: