हिंदी

Π ∫ 0 X Sin X 1 + Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]
योग

उत्तर

\[Let I = \int_0^\pi \frac{x \sin x}{1 + \sin x} d x ................(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)\sin\left( \pi - x \right)}{1 + \sin\left( \pi - x \right)} dx\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \sin x}{1 + \sin x} d x ...................(2)\]
\[\text{Adding (1) and (2) we get} \]
\[2I = \int_0^\pi \left( x + \pi - x \right)\frac{\sin x}{1 + \sin x} d x \]
\[ = \int_0^\pi \frac{\pi \sin x}{1 + \sin x} d x\]
\[ = \pi \int_0^\pi \frac{1 + sinx - 1}{1 + sinx}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{1}{1 + sinx}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{\left( 1 - sinx \right)}{\left( 1 + sinx \right)\left( 1 - sinx \right)}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{\left( 1 - sinx \right)}{1 - \sin^2 x}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{\left( 1 - sinx \right)}{\cos^2 x}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \left( \sec^2 x - \sec x \tan x \right)dx\]
\[ = \pi \left[ x \right]_0^\pi - \pi \left[ tanx - secx \right]_0^\pi \]
\[ = \pi^2 - \pi\left( 0 + 1 - 0 + 1 \right)\]
\[ = \pi^2 - 2\pi\]
\[Hence\ I = \pi\left( \frac{\pi}{2} - 1 \right)\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.5 | Q 15 | पृष्ठ ९५

संबंधित प्रश्न

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_2^3 \frac{1}{x}dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

\[\int\limits_0^{15} \left[ x \right] dx .\]

\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×