Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_0^\pi \frac{x \sin x}{1 + \sin x} d x ................(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)\sin\left( \pi - x \right)}{1 + \sin\left( \pi - x \right)} dx\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \sin x}{1 + \sin x} d x ...................(2)\]
\[\text{Adding (1) and (2) we get} \]
\[2I = \int_0^\pi \left( x + \pi - x \right)\frac{\sin x}{1 + \sin x} d x \]
\[ = \int_0^\pi \frac{\pi \sin x}{1 + \sin x} d x\]
\[ = \pi \int_0^\pi \frac{1 + sinx - 1}{1 + sinx}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{1}{1 + sinx}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{\left( 1 - sinx \right)}{\left( 1 + sinx \right)\left( 1 - sinx \right)}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{\left( 1 - sinx \right)}{1 - \sin^2 x}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{\left( 1 - sinx \right)}{\cos^2 x}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \left( \sec^2 x - \sec x \tan x \right)dx\]
\[ = \pi \left[ x \right]_0^\pi - \pi \left[ tanx - secx \right]_0^\pi \]
\[ = \pi^2 - \pi\left( 0 + 1 - 0 + 1 \right)\]
\[ = \pi^2 - 2\pi\]
\[Hence\ I = \pi\left( \frac{\pi}{2} - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate the following integral:
Evaluate each of the following integral:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Find: `int logx/(1 + log x)^2 dx`