English

Π ∫ 0 X Sin X 1 + Sin X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]
Sum

Solution

\[Let I = \int_0^\pi \frac{x \sin x}{1 + \sin x} d x ................(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)\sin\left( \pi - x \right)}{1 + \sin\left( \pi - x \right)} dx\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \sin x}{1 + \sin x} d x ...................(2)\]
\[\text{Adding (1) and (2) we get} \]
\[2I = \int_0^\pi \left( x + \pi - x \right)\frac{\sin x}{1 + \sin x} d x \]
\[ = \int_0^\pi \frac{\pi \sin x}{1 + \sin x} d x\]
\[ = \pi \int_0^\pi \frac{1 + sinx - 1}{1 + sinx}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{1}{1 + sinx}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{\left( 1 - sinx \right)}{\left( 1 + sinx \right)\left( 1 - sinx \right)}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{\left( 1 - sinx \right)}{1 - \sin^2 x}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{\left( 1 - sinx \right)}{\cos^2 x}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \left( \sec^2 x - \sec x \tan x \right)dx\]
\[ = \pi \left[ x \right]_0^\pi - \pi \left[ tanx - secx \right]_0^\pi \]
\[ = \pi^2 - \pi\left( 0 + 1 - 0 + 1 \right)\]
\[ = \pi^2 - 2\pi\]
\[Hence\ I = \pi\left( \frac{\pi}{2} - 1 \right)\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 95]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 15 | Page 95

RELATED QUESTIONS

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

`int_0^(2a)f(x)dx`


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×