English

Π / 2 ∫ 0 Sin N X Sin N X + Cos N X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 

Sum

Solution

\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sin^n x}{\sin^n x + \cos^n x} d x ..............(1)\]

\[ = \int_0^\frac{\pi}{2} \frac{\sin^n \left( \frac{\pi}{2} - x \right)}{\sin^n \left( \frac{\pi}{2} - x \right) + \cos^n \left( \frac{\pi}{2} - x \right)} dx\]

\[ = \int_0^\frac{\pi}{2} \frac{\cos^n x}{\cos^n x + \sin^n x} dx \]

\[ = \int_0^\frac{\pi}{2} \frac{\cos^n x}{\sin^n x + \cos^n x} dx ................(2)\]

\[\text{Adding (1) and (2) we get}\]

\[2I = \int_0^\frac{\pi}{2} \frac{\sin^n x}{\sin^n x + \cos^n x} + \frac{\cos^n x}{\sin^n x + \cos^n x} d x \]

\[ = \int_0^\frac{\pi}{2} \frac{\sin^n x + \cos^n x}{\sin^n x + \cos^n x} dx\]

\[ = \int_0^\frac{\pi}{2} 1\ dx\]

\[ = \int_0^\frac{\pi}{2} dx\]

\[ = \left[ x \right]_0^\frac{\pi}{2} \]

\[ = \frac{\pi}{2}\]

\[Hence\ I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 94]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 5 | Page 94

RELATED QUESTIONS

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


`int_0^(2a)f(x)dx`


\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]


Find : `∫_a^b logx/x` dx


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following:

Γ(4)


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×