Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^1 x\ e^{x^2} d\ x . \]
\[Let\ x^2 = t . Then, 2x\ dx = dt\]
\[When\ x = 0, t = 0\ and\ x\ = 1\, t = 1\]
\[ \therefore I = \frac{1}{2} \int_0^1 e^t\ dt\]
\[ \Rightarrow I = \frac{1}{2} \left( e^t \right)_0^1 \]
\[ \Rightarrow I = \frac{1}{2}\left( e - 1 \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f is an integrable function, show that
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Choose the correct alternative:
Γ(1) is
Choose the correct alternative:
If n > 0, then Γ(n) is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`