Advertisements
Advertisements
Question
Choose the correct alternative:
If n > 0, then Γ(n) is
Options
`int_0^1 "e"^-x x^("n" - 1) "d"x`
`int_0^1 "e"^-x x^"n" "d"x`
`int_0^oo "e"^x x^-"n" "d"x`
`int_0^oo "e"^-x x^("n" - 1) "d"x`
MCQ
Solution
`int_0^oo "e"^-x x^("n" - 1) "d"x`
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]
\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_1^4 \left( x^2 - x \right) dx\]
\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]
\[\int\limits_0^2 x\left[ x \right] dx .\]
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_0^{\pi/2} x \sin x\ dx\] is equal to