Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If n > 0, then Γ(n) is
पर्याय
`int_0^1 "e"^-x x^("n" - 1) "d"x`
`int_0^1 "e"^-x x^"n" "d"x`
`int_0^oo "e"^x x^-"n" "d"x`
`int_0^oo "e"^-x x^("n" - 1) "d"x`
MCQ
उत्तर
`int_0^oo "e"^-x x^("n" - 1) "d"x`
shaalaa.com
Definite Integrals
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^e \frac{\log x}{x} dx\]
\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]
Evaluate each of the following integral:
\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]
\[\int\limits_0^2 x\left[ x \right] dx .\]
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]
\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.