Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If n > 0, then Γ(n) is
विकल्प
`int_0^1 "e"^-x x^("n" - 1) "d"x`
`int_0^1 "e"^-x x^"n" "d"x`
`int_0^oo "e"^x x^-"n" "d"x`
`int_0^oo "e"^-x x^("n" - 1) "d"x`
MCQ
उत्तर
`int_0^oo "e"^-x x^("n" - 1) "d"x`
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]
\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]
\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]
\[\int\limits_1^4 \left( x^2 - x \right) dx\]
\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`