Advertisements
Advertisements
Question
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
Options
- \[\frac{\pi^4}{2}\]
- \[\frac{\pi^4}{4}\]
0
none of these
Solution
0
\[\int_{- \pi}^\pi \sin^3 x \cos^2 x d x\]
\[ = \int_{- \pi}^\pi \sin x\left( 1 - \cos^2 x \right) \cos^2 x dx\]
\[Let\ \cos x = t, then - \sin x dx = dt, \]
\[When\, x = - \pi, t = - 1, x = \pi, t = - 1\]
\[\text{Therefore the integral becomes}\]
\[ \int_{- 1}^{- 1} - \left( 1 - t^2 \right) t^2 dt\]
\[ = 0\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
Evaluate the following integral:
Evaluate each of the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`