English

The Value of π ∫ − π Sin 3 X Cos 2 X D X is ,π 4 2,π 4 4, 0,None of These - Mathematics

Advertisements
Advertisements

Question

The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 

Options

  • \[\frac{\pi^4}{2}\]
  • \[\frac{\pi^4}{4}\]
  •  0

  • none of these

MCQ

Solution

\[\int_{- \pi}^\pi \sin^3 x \cos^2 x d x\]
\[ = \int_{- \pi}^\pi \sin x\left( 1 - \cos^2 x \right) \cos^2 x dx\]
\[Let\ \cos x = t, then - \sin x dx = dt, \]
\[When\, x = - \pi, t = - 1, x = \pi, t = - 1\]
\[\text{Therefore the integral becomes}\]
\[ \int_{- 1}^{- 1} - \left( 1 - t^2 \right) t^2 dt\]
\[ = 0\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - MCQ [Page 119]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
MCQ | Q 23 | Page 119

RELATED QUESTIONS

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Choose the correct alternative:

Γ(n) is


Choose the correct alternative:

`Γ(3/2)`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×