Advertisements
Advertisements
Question
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
Options
4a2
0
2a2
none of these
Solution
\[ = a^2 \int_0^1 f\left( x \right)dx + \int_0^1 x^2 f\left( x \right) dx - 2a \int_0^1 x f\left( x \right)dx\]
\[ = a^2 \times 1 + a^2 - 2aa ...............\left( \text{As per given values} \right)\]
\[ = 2 a^2 - 2 a^2 \]
\[ = 0\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
The value of `int_2^3 x/(x^2 + 1)`dx is ______.