Advertisements
Advertisements
Question
Solution
\[Let I = \int_0^1 \left( x e^{2x} + \sin \frac{\ pix}{2} \right) d x . Then, \]
\[I = \int_0^1 x e^{2x} d x + \int_0^1 \sin \frac{\ pix}{2} dx\]
\[\text{Integrating first term by parts}\]
\[I = \left[ x \frac{e^{2x}}{2} \right]_0^1 - \int_0^1 1 \frac{e^{2x}}{2} dx + \left[ - \frac{\cos \frac{\ pix}{2}}{\frac{\pi}{2}} \right]_0^1 \]
\[ \Rightarrow I = \left[ x \frac{e^{2x}}{2} \right]_0^1 - \left[ \frac{e^{2x}}{4} \right]_0^1 - \frac{2}{\pi} \left[ \cos \frac{\ pix}{2} \right]_0^1 \]
\[ \Rightarrow I = \frac{e^2}{2} - \frac{e^2}{4} + \frac{1}{4} + \frac{2}{\pi}\]
\[ \Rightarrow I = \frac{e^2}{4} + \frac{1}{4} + \frac{2}{\pi}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
`int x^3/(x + 1)` is equal to ______.