English

1 ∫ 0 ( X E 2 X + Sin P I X 2 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

Solution

\[Let I = \int_0^1 \left( x e^{2x} + \sin \frac{\ pix}{2} \right) d x . Then, \]
\[I = \int_0^1 x e^{2x} d x + \int_0^1 \sin \frac{\ pix}{2} dx\]
\[\text{Integrating first term by parts}\]
\[I = \left[ x \frac{e^{2x}}{2} \right]_0^1 - \int_0^1 1 \frac{e^{2x}}{2} dx + \left[ - \frac{\cos \frac{\ pix}{2}}{\frac{\pi}{2}} \right]_0^1 \]
\[ \Rightarrow I = \left[ x \frac{e^{2x}}{2} \right]_0^1 - \left[ \frac{e^{2x}}{4} \right]_0^1 - \frac{2}{\pi} \left[ \cos \frac{\ pix}{2} \right]_0^1 \]
\[ \Rightarrow I = \frac{e^2}{2} - \frac{e^2}{4} + \frac{1}{4} + \frac{2}{\pi}\]
\[ \Rightarrow I = \frac{e^2}{4} + \frac{1}{4} + \frac{2}{\pi}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 48 | Page 17

RELATED QUESTIONS

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int_0^2 2x\left[ x \right]dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


\[\int\limits_1^e \log x\ dx =\]

The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^4 x dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×