Advertisements
Advertisements
Question
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
Solution
\[Let, I = \int_0^\pi x \sin x \cos^4 x d x ............(1)\]
\[ = \int_0^\pi \left( \pi - x \right) \sin\left( \pi - x \right) \cos^4 \left( \pi - x \right) d x \]
\[ = \int_0^\pi \left( \pi - x \right) \sin x \cos^4 x d x ..............(2)\]
Adding (1) and (2)
\[2I = \int_0^\pi \left[ x \sin x \cos^4 x + \left( \pi - x \right) \sin x \cos^4 x \right] d x \]
\[ = \int_0^\pi \left( x + \pi - x \right) \sin x \cos^4 x d x \]
\[ = \pi \int_0^\pi \sin x \cos^4 x d x \]
\[ = \pi \left[ \frac{- \cos^5 x}{5} \right]_0^\pi \]
\[ = \pi\left[ \frac{1}{5} + \frac{1}{5} \right]\]
\[ = \frac{2\pi}{5}\]
\[Hence, I = \frac{\pi}{5}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`