Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7 - x}} d x ..................(1)\]
\[ = \int_0^7 \frac{\sqrt[3]{7 - x}}{\sqrt[3]{7 - x} + \sqrt[3]{x}} dx .................\left(\text{Using }\int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx \right)\]
\[ = \int_0^7 \frac{\sqrt[3]{7 - x}}{\sqrt[3]{x} + \sqrt[3]{7 - x}} dx ..................(2)\]
\[\text{Adding (1) and (2) we get}\]
\[2I = \int_0^7 \frac{\sqrt[3]{x} + \sqrt[3]{7 - x}}{\sqrt[3]{x} + \sqrt[3]{7 - x}} d x \]
\[ = \int_0^7 dx\]
\[ = \left[ x \right]_0^7 = 7\]
\[Hence\ I = \frac{7}{2}\]
APPEARS IN
RELATED QUESTIONS
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_2^3 e^{- x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
`Γ(3/2)`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.