Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_{- 1}^1 \frac{1}{1 + x^2} d x . Then, \]
\[I = \left[ \tan^{- 1} x \right]_{- 1}^1 \]
\[ \Rightarrow I = \tan^{- 1} 1 - \tan^{- 1} \left( - 1 \right)\]
\[ \Rightarrow I = \frac{\pi}{4} - \left( - \frac{\pi}{4} \right)\]
\[ \Rightarrow I = \frac{\pi}{2}\]
APPEARS IN
RELATED QUESTIONS
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Solve each of the following integral:
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.