Advertisements
Advertisements
Question
Solution
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = a, b = b, f\left( x \right) = e^x , h = \frac{b - a}{n}\]
Therefore,
\[I = \int_a^b e^x d x\]
\[ = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ e^a + e^{a + h} + . . . . . . . . . . . . + e^\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ e^a \left\{ \frac{\left( e^h \right)^n - 1}{e^h - 1} \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ e^a \frac{e^{b - a} - 1}{e^h - 1} \right]\]
\[ = \lim_{h \to 0} \left[ \frac{e^b - e^a}{\frac{e^h - 1}{h}} \right]\]
\[ = \frac{e^b - e^a}{1}\]
\[ = e^b - e^a\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
`int_0^(2a)f(x)dx`
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.