Advertisements
Advertisements
Question
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Solution
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = `"e"^x/(x + 4) + "C"`.
Explanation:
Let I = `int (x + 3)/(x + 4)^2 * "e"^x "d"x`
= `int (x + 4 - 1)/(x + 4)^2 * "e"^x "d"x`
= `int [(x + 4)/(x + 4)^2 - 1/(x + 4)^2]"e"^x "d"x`
= `int [1/(x + 4) - 1/(x + 4)^2]"e"^x "d"x`
Put `1/(x + 4)` = t
⇒ `- 1/(x + 4)^2 "d"x` = dt
Let f(x) = `1/(x + 4)`
∴ f'(x) = `- 1/(x + 4)^2`
Using `int "e"^x ["f"(x) + "f'"(x)]"d"x = "e"^x "f"(x) + "C"`
∴ I = `"e"^x * 1/(x + 4) + "C"`.
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Find: `int logx/(1 + log x)^2 dx`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`