हिंदी

2 π ∫ 0 E X Cos ( π 4 + X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

उत्तर

\[Let\ I = \int_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} - \int_0^{2\pi} 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]
\[\text{Integrating second term by parts}\]
\[I = \left[ 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} + \left\{ \left[ 4 e^x \cos \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} + \int_0^{2\pi} - 4 e^x \cos \left( \frac{\pi}{4} + \frac{x}{2} \right) d x \right\}\]
\[ \Rightarrow I = \left[ 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} + \left[ 4 e^x \cos \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} - 4I\]
\[ \Rightarrow 5I = - 2 e^{2\pi} \frac{1}{\sqrt{2}} - 2 \frac{1}{\sqrt{2}} - 4 e^{2\pi} \frac{1}{\sqrt{2}} - 4 \frac{1}{\sqrt{2}}\]
\[ \Rightarrow 5I = - 3\sqrt{2} e^{2\pi} - 3\sqrt{2}\]
\[ \Rightarrow I = - \frac{3\sqrt{2}}{5}\left( e^{2\pi} + 1 \right)\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.1 | Q 52 | पृष्ठ १७

संबंधित प्रश्न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Choose the correct alternative:

Γ(n) is


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×