Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
Γ(n) is
विकल्प
(n – 1)!
n!
n Γ(n)
(n – 1) Γ(n)
MCQ
उत्तर
(n – 1)!
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]
\[\int\limits_3^5 \left( 2 - x \right) dx\]
\[\int\limits_1^2 x^2 dx\]
\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]
\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]
\[\int\limits_1^4 \left( x^2 - x \right) dx\]
\[\int\limits_0^2 \sqrt{4 - x^2} dx\]
\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]