Advertisements
Advertisements
प्रश्न
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
योग
उत्तर
= `int_0^(1/4) sqrt((1 - 4)^(1/2)) "d"x`
= `[(1 - 4x)^(3/2)/((3/2)(-4))]_0^(1/4)`
= `[(1 - 4x)^(3/2)/(-6)]_0^(1/4)`
= `- 1/6 [(1 - 4x)^(3/2)]_0^(1/4)`
= `- 1/6 [(1 - 4(1/4))^(3/2) - [1 - 4(0)]^(3/2)]`
= `- 1/6 [0 - (1)^(3/2)]`
= `- 1/6 (- 1)`
= `1/6`
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]
\[\int\limits_0^{\pi/4} \sec x dx\]
\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
Evaluate the following:
`Γ (9/2)`