Advertisements
Advertisements
प्रश्न
पर्याय
π
π/2
0
2π
उत्तर
0
\[I = \int_0^\frac{\pi}{2} \sin2x \log \tan x\ d x . . . . . \left( 1 \right)\]
\[I = \int_0^\frac{\pi}{2} \sin\left( \pi - 2x \right) \log \tan\left( \frac{\pi}{2} - x \right) d x\]
\[I = \int_0^\frac{\pi}{2} \sin2x \log \cot x\ d x . . . . . \left( 2 \right)\]
\[\text{Adding} \left( 1 \right) and \left( 2 \right), \text{we get}, \]
\[2I = \int_0^\frac{\pi}{2} \sin2x\left( \log \tan x + \log \cot x \right) d x\]
\[2I = \int_0^\frac{\pi}{2} \sin2x\left( \log \tan x \cot x \right) d x\]
\[2I = \int_0^\frac{\pi}{2} \sin2x\left( \log1 \right) d x\]
\[I = 0\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If f is an integrable function, show that
Evaluate each of the following integral:
Solve each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`