Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
बेरीज
उत्तर
`int_0^oo "e"^(-4x) x^4 "d"x = int_0^oo x^"n" "e"^(-ax) "d"x`
`("n"!)/("a"^("n" + 1))`
Where n = 4
a = 4
So the integral becomes `(4!)/4^5 = (4 xx 3 xx 2)/(4 xx 4 xx 4 xx 4 xx 4)`
= `3/128`
shaalaa.com
Definite Integrals
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Integral Calculus – 1 - Exercise 2.10 [पृष्ठ ५१]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]
\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]
\[\int\limits_0^3 \left( x + 4 \right) dx\]
\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is