हिंदी

Π ∫ 0 1 a + B Cos X D X = - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

विकल्प

  • \[\frac{\pi}{\sqrt{a^2 - b^2}}\]

  • \[\frac{\pi}{ab}\]
  • \[\frac{\pi}{a^2 + b^2}\]

  • (a + b) π

MCQ

उत्तर

\[\frac{\pi}{\sqrt{a^2 - b^2}}\]

We have

\[I = \int_0^\pi \frac{1}{a + b\cos x} d x\]

\[ = \int_0^\pi \frac{1}{a + b\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} d x\]

\[= \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{a\left( 1 + \tan^2 \frac{x}{2} \right) + b\left( 1 - \tan^2 \frac{x}{2} \right)} d x\]

\[ = \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{\left( a + b \right) + \left( a - b \right) \tan^2 \frac{x}{2}}dx\]

\[ = \int_0^\pi \frac{\sec^2 \frac{x}{2}}{\left( a + b \right) + \left( a - b \right) \tan^2 \frac{x}{2}}dx\]

\[\text{Putting} \tan\frac{x}{2} = t\]

\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]

\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2 dt\]

\[When\ x \to 0; t \to 0\]

\[and\ x \to \pi; t \to \infty \]

\[ \therefore I = \int_0^\infty \frac{2dt}{\left( a + b \right) + \left( a - b \right) t^2}\]

\[ = \frac{2}{a - b} \int_0^\infty \frac{1}{\left( \frac{a + b}{a - b} \right) + t^2}dt\]

\[= \frac{2}{\left( a - b \right)} \int_0^\infty \frac{1}{\left( \sqrt{\frac{a + b}{a - b}} \right)^2 + t^2}dt\]

\[ = \frac{2}{\left( a - b \right)} \times \sqrt{\frac{a - b}{a + b}} \left[ \tan^{- 1} \frac{t}{\sqrt{\frac{a + b}{a - b}}} \right]_0^\infty \]

\[ = \frac{2}{\sqrt{a^2 - b^2}}\left[ \frac{\pi}{2} - 0 \right]\]

\[ = \frac{2}{\sqrt{a^2 - b^2}}\left[ \frac{\pi}{2} \right]\]

\[ = \frac{\pi}{\sqrt{a^2 - b^2}}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - MCQ [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
MCQ | Q 11 | पृष्ठ ११७

संबंधित प्रश्न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


\[\int\limits_0^2 x\left[ x \right] dx .\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

If n > 0, then Γ(n) is


Choose the correct alternative:

`Γ(3/2)`


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×