Advertisements
Advertisements
प्रश्न
विकल्प
\[\frac{\pi}{\sqrt{a^2 - b^2}}\]
- \[\frac{\pi}{ab}\]
\[\frac{\pi}{a^2 + b^2}\]
(a + b) π
उत्तर
\[\frac{\pi}{\sqrt{a^2 - b^2}}\]
We have
\[I = \int_0^\pi \frac{1}{a + b\cos x} d x\]
\[ = \int_0^\pi \frac{1}{a + b\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} d x\]
\[= \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{a\left( 1 + \tan^2 \frac{x}{2} \right) + b\left( 1 - \tan^2 \frac{x}{2} \right)} d x\]
\[ = \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{\left( a + b \right) + \left( a - b \right) \tan^2 \frac{x}{2}}dx\]
\[ = \int_0^\pi \frac{\sec^2 \frac{x}{2}}{\left( a + b \right) + \left( a - b \right) \tan^2 \frac{x}{2}}dx\]
\[\text{Putting} \tan\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]
\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2 dt\]
\[When\ x \to 0; t \to 0\]
\[and\ x \to \pi; t \to \infty \]
\[ \therefore I = \int_0^\infty \frac{2dt}{\left( a + b \right) + \left( a - b \right) t^2}\]
\[ = \frac{2}{a - b} \int_0^\infty \frac{1}{\left( \frac{a + b}{a - b} \right) + t^2}dt\]
\[= \frac{2}{\left( a - b \right)} \int_0^\infty \frac{1}{\left( \sqrt{\frac{a + b}{a - b}} \right)^2 + t^2}dt\]
\[ = \frac{2}{\left( a - b \right)} \times \sqrt{\frac{a - b}{a + b}} \left[ \tan^{- 1} \frac{t}{\sqrt{\frac{a + b}{a - b}}} \right]_0^\infty \]
\[ = \frac{2}{\sqrt{a^2 - b^2}}\left[ \frac{\pi}{2} - 0 \right]\]
\[ = \frac{2}{\sqrt{a^2 - b^2}}\left[ \frac{\pi}{2} \right]\]
\[ = \frac{\pi}{\sqrt{a^2 - b^2}}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
If n > 0, then Γ(n) is
Choose the correct alternative:
`Γ(3/2)`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int x^3/(x + 1)` is equal to ______.