हिंदी

3 ∫ 1 ( 2 X 2 + 5 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

योग

उत्तर

\[\text{Here, }a = 1, b = 3, f\left( x \right) = 2 x^2 + 5x, h = \frac{3 - 1}{n} = \frac{2}{n}\]

Therefore,

\[ \int_1^3 \left( 2 x^2 + 5x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]

\[ = \lim_{h \to 0} h\left[ f\left( 1 \right) + f\left( 1 + h \right) + . . . . . . . . . . + f\left( 1 + \left( n - 1 \right)h \right) \right]\]

\[ = \lim_{h \to 0} h\left[ 2 + 5 + 2 \left( 1 + h \right)^2 + 5\left( 1 + h \right) + 2 \left( 1 + 2h \right)^2 + 5\left( 1 + 2h \right) + . . . . . . . . . + 2 \left( \left( n - 1 \right)h \right)^2 + 5\left( \left( n - 1 \right)h \right) \right]\]

\[ = \lim_{h \to 0} h\left[ 2n + 2 h^2 \left( 1^2 + 2^2 + . . . . . . . . . . . . . . \left( n - 1 \right)^2 \right) + 4h\left( 1 + 2 + . . . . . . . . . . . . \left( n - 1 \right) \right) + 5n + 5h\left( 1 + 2 + . . . . . . . . . . . . \left( n - 1 \right) \right) \right]\]

\[ = \lim_{h \to 0} h\left[ 7n + 2 h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} + 9h\frac{n\left( n - 1 \right)}{2} \right]\]

\[ = \lim_{n \to 0 } \left[ 14 + \frac{8}{3}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) + 18\left( 1 - \frac{1}{n} \right) \right]\]

\[ = 14 + \frac{16}{3} + 18\]

\[ = \frac{112}{3}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 66 | पृष्ठ १२३

संबंधित प्रश्न

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


`int x^3/(x + 1)` is equal to ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×