Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_4^{12} x \left( x - 4 \right)^\frac{1}{3} d x . \]
\[Let\ x - 4 = t . Then, dx = dt\]
\[When\ x = 4, t = 0\ and\ x\ = 12, t = 8\]
\[ \therefore I = \int_0^8 \left( t + 4 \right) t^\frac{1}{3} dt\]
\[ \Rightarrow I = \int_0^8 \left( t^\frac{4}{3} + 4 t^\frac{1}{3} \right) dt\]
\[ \Rightarrow I = \left[ \frac{3}{7} t^\frac{7}{3} + \frac{3}{1} t^\frac{4}{3} \right]_0^8 \]
\[ \Rightarrow I = \frac{384}{7} + 48\]
\[ \Rightarrow I = \frac{720}{7}\]
APPEARS IN
संबंधित प्रश्न
Solve each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following:
`Γ (9/2)`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`